
DISTRIBUTED HASH TABLE BASED FILE SHARING SYSTEM USING
CHORD ALGORITHM

Shaunak Chaudhary, Rahim Firoz Chunara, Iniyan Chandran Ramachandran
Department of Computer Science and Engineering

Santa Clara University
{schaudhary2, rchunara, iniyan}@scu.edu

W1635919, W1649825, W1651510

Abstract— This report covers the design and implementa-
tion of a peer-to-peer file sharing system that doesn’t rely
on central servers. We used the Chord protocol, which is
based on distributed hash tables (DHTs), to enable efficient
lookup of files across a decentralized network of nodes. Each
node in the network maintains a finger table with routing
information to locate the successor node responsible for
a given file. This allows files to be efficiently located and
retrieved from other nodes in the network. We implemented
file replication strategies to ensure data availability, and
concurrency control mechanisms to allow multiple users
to access files simultaneously. Key features of the system
include the ability for nodes to dynamically join or leave
the network, upload or download files, and maintain fault
tolerance through monitoring and stabilization routines. The
decentralized nature of the system eliminates single points of
failure and provides a scalable solution for file sharing without
relying on central servers. Experimental results demonstrate
that the system can effectively distribute file storage and
retrieval across the participating peers in the network. Overall,
this report presents a robust and decentralized approach to
peer-to-peer file sharing.

Index Terms— Chord, DHT, Barnes-Hut, Parallelization

I. INTRODUCTION

Centralized client-server architectures for file sharing
systems possess inherent limitations in terms of scal-
ability, reliability, and potential single points of failure.
This has motivated research into decentralized peer-to-
peer (P2P) approaches that distribute the responsibilities
of data storage and lookup across multiple nodes in the
network. Distributed Hash Tables (DHTs) have emerged
as a powerful technique to enable efficient resource dis-
covery and routing in structured P2P networks without
relying on central coordination.

This paper presents the design and implementation of
a DHT-based file sharing system built using the Chord
protocol. Chord employs consistent hashing to map data
identifiers onto nodes, forming a logical ring topology.
Each node maintains a finger table containing routing
information about other nodes, which allows queries for a
given file to be directed towards the responsible successor
node via O(log N) hops.

The proposed system incorporates several key mecha-
nisms to facilitate decentralized file sharing. Replication
strategies replicate files across multiple successors to en-

hance data availability. Concurrency control through tech-
niques like file locking or leases enables parallel access
to shared files. Dynamic node join and leave operations
preserve routing consistency as peers enter or depart the
network. Periodic stabilization routines detect failed nodes
and update successor pointers to maintain fault tolerance.

Through simulations and experimental evaluations, the
efficacy of the DHT-driven architecture is demonstrated
in terms of distributing storage load, efficient lookup
performance, resilience to node failures, and the ability
to scale as nodes join or leave the system. The decentral-
ized nature eliminates centralized bottlenecks and single
points of failure, making it a promising approach for
building robust and scalable file sharing platforms.

II. LITERATURE SURVEY

A. Previous Work

Distributed hash tables (DHTs) have been instrumental
in enabling decentralized peer-to-peer file sharing systems
that operate without relying on central servers. Popu-
lar platforms like BitTorrent and IPFS have successfully
leveraged DHTs to facilitate the exchange of files across a
decentralized network of nodes.

However, the applications of DHTs extend beyond these
well-known examples. Various projects have explored cus-
tomized implementations of DHTs to cater to specific
use cases and objectives. For instance, Freenet, Tribler,
Hyperspace, and Ares Galaxy have employed DHTs to
enable decentralized file sharing while prioritizing goals
such as censorship resistance, privacy, optimized routing
algorithms, and improved usability, respectively. Even the
pioneering Napster system, which predates many of these
projects, incorporated a DHT-driven architecture for de-
centralized file downloading.

The diverse range of applications and implementations
highlights the adaptability and versatility of DHTs in the
realm of decentralized file storage and retrieval. Ongoing
research efforts aim to further enhance critical aspects
of DHT-based systems, such as scalability, efficiency, and
security, to meet the evolving demands of various appli-
cations.

Additionally, the decentralized nature of DHTs aligns
well with the principles of peer-to-peer networks, pro-

1



moting resilience, load balancing, and fault tolerance. As
research in this field continues, we can expect to see
innovative approaches that leverage DHTs to facilitate de-
centralized file sharing while addressing challenges related
to performance, privacy, and security.

It is worth noting that while DHTs have proven to be
a powerful tool for decentralized file sharing, alternative
approaches, such as blockchain-based systems and de-
centralized storage networks, are also being explored. The
interplay between these technologies and their potential
synergies could lead to new advancements in the field of
decentralized data storage and distribution.

B. Literature Survey

The groundbreaking paper by Stoica et al. [6] on the
Chord protocol marks a pivotal moment in distributed sys-
tems research. Chord simplifies the design of distributed
hash tables by using a consistent hashing technique to
distribute keys evenly across the nodes in the network.
This design ensures that even as nodes join or leave the
system, the average number of keys for which any node
is responsible changes minimally. The protocol’s elegance
lies in its ability to provide a fast (O(log N) complexity) and
reliable method for node lookup, crucial for scalable peer-
to-peer applications. This foundational work has set the
stage for numerous advancements in DHTs, emphasizing
the importance of efficient routing, fault tolerance, and
load balancing in distributed systems.

Puttaswamy and Zhao [1] extend the conversation
around DHTs by advocating for unstructured approaches
to better meet the demands of large-scale and diverse
application needs. Their argument is based on the ob-
servation that structured DHTs, while efficient in lookup
operations, may not adequately support the dynamic na-
ture of real-world applications where node churn, hetero-
geneous capacities, and varied latency requirements are
common. By proposing unstructured DHTs, they highlight
the potential for improved routing efficiency and resource
discovery, particularly in environments where flexibility
and adaptability are paramount. This work encourages a
reevaluation of DHT architectures to better align with the
evolving landscape of distributed computing and peer-to-
peer networks.

Xu et al. [2] tackle the challenges of file sharing in DHT-
based peer-to-peer (P2P) systems, focusing on scalability
and the efficient distribution of resources. They propose
strategies that mitigate common issues in P2P systems,
such as hotspots and imbalanced resource distribution. By
optimizing file sharing, their work contributes to making
DHT networks more robust and efficient, reducing the
overhead associated with file lookup and transfer. This
research is significant for its practical implications, offer-
ing solutions that enhance the performance of file-sharing
applications and, by extension, the user experience in P2P
systems.

The integration of DHTs with social networking, as
presented by Shen et al. [3], represents an innovative

application of distributed systems technology. Social-P2P
leverages the decentralized nature of DHTs to create a
social networking framework that is both scalable and
privacy-preserving. This approach addresses some of the
key concerns in online social networks, such as data
ownership and user privacy, by distributing social media
content across a P2P network. The work by Shen et al.
showcases the versatility of DHTs and opens up new av-
enues for their application, emphasizing the potential for
decentralized technologies to reshape social interactions
on the internet.

The development of a distributed cache for the Hadoop
Distributed File System (HDFS) by Zhang et al. [4] il-
lustrates the utility of DHTs in cloud computing envi-
ronments. By improving real-time file access through a
distributed cache that leverages DHTs, this work addresses
a critical bottleneck in cloud storage systems: latency. The
significance of this research lies in its demonstration of
how DHTs can enhance the scalability and performance
of cloud services, making them more suitable for real-time
applications. This contribution is particularly relevant as
the demand for cloud computing continues to grow,
highlighting the need for innovative solutions to improve
data access times and system responsiveness.

Riley and Scheideler [5] explore the use of DHTs within
computational grids, focusing on the efficient manage-
ment of distributed computing resources. Their research
underscores the adaptability of DHTs to a wide range
of computational and storage tasks, from job scheduling
to data storage. By applying DHTs to grid computing,
they illustrate how these structures can facilitate resource
management in distributed environments, improving the
efficiency and scalability of computational grids. This
work contributes to a broader understanding of the poten-
tial for DHTs to optimize distributed computing beyond
traditional peer-to-peer file sharing or data storage appli-
cations.

III. DISTRIBUTED SYSTEM CHALLENGES
ADDRESSED

A. Scalability

Dynamic Node Management: Our implementation
supports dynamic node entry and exit with minimal
disruption. The joinNode method allows new nodes to
integrate seamlessly into the network, re-calibrating the
network’s topology without significant overhead. This
flexibility is crucial for scalable systems, as it allows the
network to expand or contract based on demand.

Efficient Finger Tables: The creation and maintenance
of finger tables in our code significantly reduce the
number of steps required to locate a node responsible
for a particular key. Since the size of the finger table
is logarithmic in relation to the number of nodes, the
increase in the network size does not linearly increase
the complexity of lookup operations, thus preserving the
system’s scalability.

2



B. Fault Tolerance

Our system demonstrates fault tolerance in several
ways. It continuously monitors the immediate successor
of each node through periodic "ping" operations. This
allows the system to detect and recover from node failures
quickly. When a failure is detected, the system initiates
a stabilization process to update the predecessor and
successor links, ensuring the network remains connected
and operational. The use of a finger table also indirectly
contributes to fault tolerance by providing multiple path-
ways for finding a key, thus allowing the system to handle
node failures gracefully.

C. Efficiency in Data Lookup

The efficiency of data lookup in our system is achieved
through the implementation of the finger table. Each
node maintains a finger table with entries pointing to
other nodes in the system, allowing for fast routing of
queries. The lookup process uses these entries to reduce
the distance to the target key by half with each step,
on average, leading to an efficient O(log N) lookup time,
where N is the number of nodes in the system. This design
ensures that even as the network grows, the efficiency of
data lookup is maintained.

D. Load Balancing

Uniform Key Distribution: The use of a consistent
hashing function for node and key mapping ensures
a uniform distribution of responsibilities across the
network. This distribution helps in preventing any single
node from becoming overloaded with too much data or
too many requests.

Replication and Redundancy: While our code
primarily focuses on establishing a robust Chord
protocol foundation, the principles of replication and
redundancy are implied through file transfer mechanisms
(transferFile). Implementing data replication across
multiple nodes can further enhance load balancing
and data availability, a direction we might consider for
extending our project.

IV. KEY DESIGN GOALS

A. Design Goals

1) Heterogeneity:
a) Using Python for Cross-Platform Support: We

chose Python as our development language, fully capital-
izing on its robust cross-platform support. This decision
was strategic, ensuring our system could be deployed
across various operating systems—be it Windows, Linux,
or macOS—without requiring any modifications to our
code base. This universal compatibility is crucial for a dis-
tributed system where nodes could span across different
technological ecosystems. Our reliance on Python’s stan-
dard libraries, including socket for networking, threading
for managing concurrent operations, and hashlib for im-
plementing consistent hashing, was instrumental. These

libraries are meticulously designed to be agnostic to the
underlying platform, thereby reinforcing our system’s het-
erogeneity.

b) Universal Networking with TCP/IP: The use of the
TCP/IP protocols, implemented through Python’s socket
library, was a crucial design decision for our project.
This industry-standard approach ensured that our nodes
could communicate effectively across different network
infrastructures, ranging from the vast expanse of the global
internet to localized network environments within orga-
nizations or homes. By adhering to these widely adopted
protocols, we eliminated the need for specialized config-
urations or proprietary communication mechanisms. Our
system seamlessly integrates with existing network setups,
allowing for a plug-and-play experience that abstracts
away the complexities of network communication. This
choice not only enables our system to function reliably
across various network topologies but also future-proofs
our solution, ensuring compatibility with evolving network
technologies and standards. By leveraging the ubiquitous
nature of TCP/IP, we have created a system that can be
readily deployed and scaled without encountering barriers
or compatibility issues. Furthermore, the socket library in
Python provided us with a straightforward and powerful
interface to harness the capabilities of these protocols. Its
ease of use and extensive documentation allowed us to
focus on the core functionality of our system, rather than
getting bogged down in the intricate details of network
programming. In essence, our decision to integrate TCP/IP
protocols through Python’s socket library laid a solid foun-
dation for a robust, flexible, and scalable system that can
adapt to diverse network environments while maintaining
seamless communication between nodes.

2) Openness:
a) Cross-Platform Networking: This choice ensures

that our system can communicate over networks ir-
respective of the underlying operating system of each
node. For example, the socket.socket(socket.AF_INET,
socket.SOCK_STREAM) instantiation in our code is a clear
indicator of utilizing TCP/IP standards for reliable, stream-
oriented communication, enabling our nodes to join and
interact within the distributed network seamlessly.

b) Universally Accepted Protocols: By relying on
TCP/IP for our network communications, we ensure
our system’s ability to operate on a universal set of
protocols that are widely accepted and used. This not
only guarantees interoperability with other systems and
technologies but also facilitates easy integration, as these
protocols form the backbone of most modern network
communications.

3) Security:
a) Foundational Security Measures: Our current sys-

tem utilizes SHA-1 hashing provided by Python’s hashlib
for node and data identification. This is a foundational
security measure, ensuring a level of obfuscation and
integrity in our distributed network.

3



Integrity: The use of hashing for data verification, along
with planned digital signatures, will maintain the integrity
of the data as it is stored and transferred within the
network.

4) Failure Handling:
a) Periodic Health Checks: Periodic Health Checks:

Our system features a proactive approach to failure de-
tection with the implementation of periodic health checks
of successor nodes. The pingSucc method encapsulates
this functionality within our code, where each node sends
a "ping" message to its immediate successor at regular
intervals. These health checks help in early detection of
node failures, which is vital for maintaining the stability
of the network.

Dynamic Topology Updates: Upon detection of a node
failure, our system swiftly reconfigures the network topol-
ogy. This is achieved by updating the predecessor and
successor references, ensuring that the network remains
interconnected and operational. The reconfiguration pro-
cess is embedded within our failure detection mech-
anisms, triggering a seamless transition when a node
becomes unresponsive or leaves the network.

b) Stabilization Protocol: An integral part of our fail-
ure handling strategy is the stabilization protocol that runs
periodically. This protocol is responsible for updating the
finger tables and verifying the immediate successor and
predecessor of each node, ensuring that the system self-
corrects and adapts to changes due to node failures.

Resilience through Redundancy: While not explicitly
implemented in the current version of our code, our
design allows for future inclusion of data redundancy
mechanisms. By replicating data across multiple nodes, we
can ensure that the system remains resilient to data loss,
even in the event of multiple concurrent node failures.

c) System Recovery: In the face of node failures,
our system is designed to ensure data persistence and
accessibility. Recovery mechanisms within our code are
primed to redistribute the responsibilities of a failed node
to other active nodes, thereby preserving the integrity
and availability of the data managed by the system.

5) Concurrency:
a) Threading for Parallel Operations: Our system uti-

lizes Python’s threading capabilities to manage concur-
rency, allowing multiple operations to occur simultane-
ously without interference. Each node in our network can
handle multiple incoming and outgoing connections in
parallel, which is crucial for maintaining a responsive
and efficient network. Within our code, this is imple-
mented through the threading.Thread target invocation,
allowing separate threads to manage client requests and
background tasks like periodic pinging and stabilization.

Thread-Safe Communication: To ensure thread safety
during concurrent operations, our code is structured to
handle shared resources carefully. When threads modify
shared data, such as updating the finger table or altering
the predecessor and successor nodes, we manage concur-

rent access to prevent data corruption. Python’s threading
library provides the necessary constructs, such as locks,
to synchronize these operations, which our system utilizes
when performing updates that need atomicity.

b) Scalable Connection Handling: The design of our
system’s concurrency model is inherently scalable. By
employing threads, our system can scale to handle an in-
creasing number of concurrent operations as the network
grows. The listenThread function in our code serves as
a listening socket, accepting connections and spawning
new threads for each peer connection. This design allows
our system to maintain high performance and low latency
even as the number of nodes and user requests increases.

Resource Management: Our concurrency approach also
focuses on efficient resource management. Threads are
lightweight and consume fewer resources than spawning
new processes, making them ideal for a distributed system
where resource conservation is important. Our imple-
mentation ensures that each node uses its computational
resources efficiently, managing multiple connections and
operations concurrently without overwhelming the node’s
processing capabilities.

c) Asynchronous Operations: The concurrency in our
system also allows for asynchronous operations, which
are essential for distributed systems where operations
can be time-consuming, such as network I/O or file
transfers. Our code ensures that these operations do not
block the execution of other critical tasks, maintaining
the system’s overall responsiveness. For instance, the
transferFile method allows for asynchronous file uploads
and downloads, ensuring that user requests are handled
promptly while the system continues to perform other
necessary functions in the background.

6) Scalability:
a) Efficient Resource Utilization: Our system’s archi-

tecture is designed to efficiently manage resources, ensur-
ing that it can handle a growing number of nodes without
a proportional increase in overhead. The implementation
of the Chord protocol within our code, particularly the
getSuccessor and updateFTable methods, reflects this by
utilizing a scalable hashing technique and maintaining a
finger table that grows logarithmically with the number
of nodes. This ensures that the addition of nodes incurs
a minimal increase in routing complexity, allowing the
system to scale gracefully.

Adaptive Load Distribution: The consistent hashing
mechanism allows our system to distribute data and work-
load evenly across the network. As nodes join or leave,
the system dynamically redistributes the keys, maintaining
balanced load distribution among the available nodes.
This is a pivotal feature for scalability, as it prevents any
single node from becoming a bottleneck, thus enhancing
the system’s ability to expand.

b) Automated Node Integration: Our code facilitates
automated integration of new nodes into the network.
Through the joinNode method, a node can seamlessly

4



enter the system, with its presence automatically ac-
knowledged by existing nodes and the necessary updates
made to their finger tables. This automation is crucial for
scalability as it allows the system to evolve without manual
intervention.

Robust Network Topology: The Chord protocol’s ring
structure, coupled with our implementation of finger
tables, creates a robust topology that can withstand
significant changes in the network size. This robustness
is essential for a scalable system, as it ensures that the
network remains stable and efficient despite continuous
growth or contraction.

7) Transparency:
a) Simplified User Interface: In our system, we ab-

stract the complexities of the underlying distributed op-
erations from the end-user. Functions for joining and
leaving the network, as well as for file management,
are all presented through simple interfaces. This design
philosophy is captured in our code through methods like
printMenu, which provides users with clear and concise
options for interaction, hiding the intricate processes
running behind the scenes.

Abstraction of Network Mechanics: We ensure that the
users are not burdened with the details of the Chord
protocol mechanics or the management of the distributed
network. The system’s operations, such as key placement
or data retrieval, are all handled transparently by our
code. For example, the lookupID method encapsulates the
process of locating a key within the network, providing the
user with the result without exposing the underlying steps.

b) Consistent User Experience: Regardless of the net-
work’s state—whether it’s expanding with new nodes or
handling failures—our system maintains a consistent user
experience. The complexity of these operations is man-
aged internally within our code, such as through the
pingSucc method for failure detection and the upda-
teOtherFTables method for maintaining accurate routing
information.

Streamlined Interaction Flow: Our user interaction flow
is designed to be intuitive. Even as the network scales
and the underlying data structures become more complex,
the user interface remains straightforward, ensuring that
from a user’s perspective, the system’s operation remains
unchanged.

B. Key Components

1) Node: In the architecture of our Chord-based dis-
tributed system, the Node class stands as the cornerstone,
encapsulating the essence of network participants. Each
instance of this class represents an individual node within
the network, meticulously designed to incorporate all nec-
essary attributes and functionalities required for seamless
operation within the distributed environment. Central to
each node’s identity are its IP address and port number,
which not only facilitate network communication but also
contribute to the generation of a unique identifier (ID) for

the node. This ID is derived through the application of
the SHA-1 hashing algorithm on the concatenation of the
node’s IP address and port, ensuring a unique and evenly
distributed identifier across the Chord ring.

Upon instantiation, each Node object is equipped with
references to its immediate successor and predecessor
within the network, establishing a bidirectional linkage
that is pivotal for the maintenance of the Chord’s ring
structure. These references are dynamically updated in
response to nodes joining or leaving the network, thereby
preserving the integrity and continuity of the ring. Fur-
thermore, the Node class incorporates a finger table,
an ordered dictionary that significantly enhances the
efficiency of routing and lookup operations within the
network. By maintaining shortcuts to strategically selected
nodes across the ring, the finger table enables each node
to drastically reduce the number of hops required to locate
any given key, thereby ensuring an efficient O(log N)
lookup time.

To operationalize these functionalities, the Node class
is endowed with a suite of methods designed to facilitate
network integration, data management, and operational
maintenance. The joinNode and sendJoinRequest
methods enable nodes to seamlessly integrate into
the network, automatically updating successor and
predecessor links to reflect the new network topology.
Conversely, the leaveNetwork method allows for graceful
departure, ensuring that a leaving node’s responsibilities
are duly transferred and that the network reconfigures
itself to maintain stability. Additionally, methods such as
transferFile, uploadFile, and downloadFile are integral to
the system’s file management capabilities, enabling nodes
to handle file storage and retrieval operations across the
network efficiently.

2) Hash Function: In the design of our Chord-based
distributed system, the hash function plays a pivotal role
in establishing the system’s structure and facilitating its
core functionalities. The choice of the SHA-1 hashing
algorithm, implemented through Python’s hashlib module
in our getHash function, is instrumental in achieving
a uniform distribution of nodes and data across the
network’s identifier space. This uniformity is crucial for
maintaining balance and ensuring efficient operation of
the system.

The hash function’s primary responsibility is to convert
variable-length input, such as a node’s IP address and port
number or a file name, into a fixed-length hash value.
This value then serves as a unique identifier within the
Chord ring or determines the placement of data within
the network. By employing SHA-1, we ensure that each
input is mapped to a seemingly random point in the
identifier space, thereby minimizing the risk of clustering
and uneven load distribution among nodes.

One of the inherent challenges in distributed systems
is the effective management of resources and the effi-
cient routing of requests. The getHash function directly

5



addresses these challenges by providing a deterministic
yet evenly distributed mapping mechanism. For instance,
when a new node joins the network, its unique identifier
is generated by hashing its IP address and port number.
This process ensures that the node is assigned a specific
position within the ring, facilitating the correct updating of
successor and predecessor references and the rebalancing
of data responsibilities.

Similarly, the hash function is applied to data keys when
files are added to the system. This determines which node
will be responsible for storing the file, based on the closest
succeeding node to the hash value of the file’s key. Such a
mechanism not only simplifies data lookup and retrieval
by providing a clear method for locating data but also
aids in achieving a balanced distribution of data storage
responsibilities across the network.

Moreover, the use of SHA-1 hashing contributes to the
scalability of our system. As the network grows, the hash
function continues to ensure that new nodes and data
are integrated smoothly, without requiring significant
reorganization of the network or creating hotspots of
activity. This scalability is vital for the long-term viability
and performance of the distributed system.

3) Finger Table: Within the architecture of our Chord-
based distributed system, as defined by the Python code
we’ve developed, the implementation of the finger table
stands out as a key innovation tailored to enhance the
network’s operational efficiency and scalability. This de-
tailed mechanism, integral to each node’s functionality
within our system, exemplifies our approach to optimizing
lookup processes and ensuring seamless adaptability as
the network evolves.

The finger table in each Node instance comprises a set
of entries that serve as shortcuts to other nodes across
the network, calculated and updated based on the node’s
unique identifier within the Chord ring. Each entry in this
table points to a successor node for different portions
of the identifier space, allowing for rapid traversal of the
network when locating the successor of a given key. This
structure, realized through the updateFTable method in
our code, leverages a logarithmic distribution of entries
to minimize the path length for any lookup operation,
achieving an average complexity of O(log N) hops to locate
a specific node or data key.

Our system’s code dynamically maintains the finger
table’s accuracy and relevance through periodic updates.
These updates are crucial, especially in a network char-
acterized by frequent node join and leave events. The
updateFTable method recalibrates each entry in the table
to reflect the current network topology, ensuring that
lookup operations remain efficient despite changes in the
network’s composition. This dynamic maintenance mech-
anism underscores our system’s resilience and capacity to
self-stabilize.

Moreover, the finger table’s design inherently
supports the network’s scalability. The addition of

nodes necessitates minimal adjustments to the existing
nodes’ finger tables, primarily affecting only a logarithmic
number of entries directly. This feature is demonstrated
in our joinNode and leaveNetwork methods, where
the integration or departure of nodes triggers targeted
updates to the finger tables, preserving the network’s
efficiency and integrity without imposing significant
overhead.

4) Successor and Predecessor Nodes: Within the Chord
distributed hash table implemented in our ChordNode
class, each node’s place in the ring is determined
by its successor (self.successor) and predecessor
(self.predecessor). These references are essential for
the Chord protocol, as they maintain the ring’s structure
and ensure that the distributed system can perform
data lookups and storage operations efficiently. Initially,
a ChordNode points to itself as both its successor and
predecessor, representing a Chord ring with a single
node.

The Chord DHT is dynamic, allowing nodes to join and
leave. The join_handler and leave_network methods are
crucial for managing these changes. When a new node
joins, it must correctly position itself in the ring by finding
and setting its correct successor and predecessor, which
involves the modify_successor and modify_predecessor
methods. These adjustments are critical for ensuring the
ring remains intact and that key responsibilities are cor-
rectly reassigned.

To handle node failures, we have implemented a
stabilization protocol. The ping_successor method
ensures that a node’s successor is operational. If the
successor fails, the node uses its finger table to locate
a new successor. This process is fundamental to the
resilience of the Chord ring, allowing it to recover
gracefully from node failures without disrupting the
overall system.

5) Consistency Models: In our distributed system, we
understand that data consistency models are not one-size-
fits-all, and so we offer three distinct models catered to
various application requirements, each represented within
the ConsistencyStrategy Enum. The first, Eventual Consis-
tency, implemented in the replicate_file_eventual method,
is designed to prioritize availability and fault tolerance. We
chose this model for scenarios where it is acceptable for
data to be inconsistent temporarily, with the assurance
that it will eventually reach a consistent state. This model
is especially well-suited for applications where the system
must continue to operate despite network partitions or
delays.

We recognize that certain applications require a
stronger form of consistency, which led us to im-
plement Sequential Consistency through the repli-
cate_file_sequential method. This model guarantees that
operations appear in the same sequence on all nodes, pro-
viding a more intuitive form of consistency for users. Se-

6



quential consistency is particularly useful in collaborative
environments where the order of operations—such as ed-
its in a document or updates to a shared database—must
be consistent across the system.

For use cases demanding the most stringent
consistency, we provide Linearizable Consistency with
the replicate_file_linearizable method. This model offers
the strongest level of consistency in our system, ensuring
that all operations are immediately consistent across all
nodes. It’s akin to having a single copy of the data, even
though it’s distributed across multiple nodes. When we
deploy this model, clients can be confident that they are
always interacting with the latest data, with no delays
or temporal inconsistencies. Linearizable consistency is
essential for systems where immediate data accuracy is
critical, such as financial services or real-time monitoring
systems.

6) File Storage and Management: Our approach to file
management involves a meticulous process where each
file’s name is hashed to ascertain its rightful place within
the ring. Utilizing the upload_file and download_file meth-
ods, we’ve enabled our nodes to handle file distribution
and retrieval operations seamlessly. When a user requests
to upload a file, the system calculates the file’s hash and
directs the file to the appropriate node. This method of
direct addressing minimizes the latency often associated
with data transfer in distributed networks and simplifies
the retrieval process, as the location of each file is pre-
dictable and easily determined.

Recognizing the diversity in our users’ needs for data
consistency and availability, we have incorporated various
file replication strategies that complement our file storage
mechanism. These strategies are deeply integrated into
our node’s operations, ensuring that data is not only
stored but also replicated across the network following
the selected consistency model. For instance, our
replicate_file_eventual method ensures data is eventually
consistent across the system, which is particularly
beneficial in scenarios where network partitioning is
a concern. Meanwhile, our replicate_file_linearizable
provides instantaneous consistency, a necessity for
applications that cannot tolerate stale data.

7) Resource Discovery Protocol: In designing the dis-
cover_resources method within our ChordNode class, we
aimed to create a streamlined process allowing nodes to
determine the ownership of any given resource swiftly.
Our use of consistent hashing to assign resources to nodes
ensures a balanced distribution, minimizing the potential
for hotspots within the network. When a resource is
queried, the system calculates the hash of the resource
name, leading to the identification of the responsible
node with minimal overhead, thus optimizing the lookup
process.

Our system thrives on its decentralized nature, which
brings the challenge of how to efficiently locate resources

without a central directory. To navigate this, we harness
the power of the Chord protocol’s logical ring structure.
Each node only needs knowledge of its immediate succes-
sor in the ring and a finger table with references to other
nodes to facilitate faster hops around the ring. This setup
allows for the rapid discovery of the node responsible
for a given key, as the query is passed along the ring in
a structured manner, drastically reducing the number of
hops compared to a linear search across all nodes.

We designed our resource discovery mechanism to be
inherently scalable. The discover_resources function is
not merely a tool for locating resources but a testament
to the scalability of our system. As new nodes join and
the network grows, our method dynamically adjusts,
with each node’s finger table being updated to maintain
the efficiency of resource lookups. This means that as
our system expands, the resource discovery process
remains robust and time-efficient, crucial for maintaining
performance in a large-scale distributed system. Through
this method, we can assure users that the system’s
capacity to swiftly locate and retrieve resources will
persist, regardless of the network’s size.

8) Concurrency Control: We implemented two concur-
rency control strategies, embodied in the Concurrency-
Control Enum: Optimistic and Pessimistic. The optimistic
approach, encapsulated in the acq_lock_opt method, is
guided by the assumption that collisions are rare and
hence allows operations to proceed with minimal locking.
This strategy is ideal for environments where processes
are largely independent and do not frequently interfere
with each other.

For scenarios where data conflicts are more proba-
ble, we incorporated the pessimistic concurrency control
method, illustrated in the acq_lock_pess function. This
method proactively prevents access to a resource by other
operations until the current one completes. It’s a strategy
that prioritizes data consistency and serializability, par-
ticularly beneficial in systems with high contention for
resources. By providing these two concurrency control
strategies, our system can be tuned to match the specific
requirements of an application, ensuring that the balance
between system efficiency and transaction reliability is
maintained.

The flexibility of choosing between these concurrency
strategies allows our system to adapt to the diverse
demands of various applications. We have engineered
our ChordNode class to select the appropriate locking
mechanism during runtime based on the system’s
current state and workload. In doing so, we enable our
system to handle a wide array of operations – from
read-heavy to write-heavy workloads – while ensuring
that the data remains consistent and the performance,
optimal. As we move forward, our commitment as a
team is to continually refine these strategies, embracing
the complexities of distributed systems to deliver a
service that is both robust and versatile in the face of

7



concurrency.

V. WORKING AND STRUCTURE

1) Full Working:

Image1: Workflow of P2P File Sharing

This flowchart provides a high-level overview of the
main operations and flow of control in the Chord Net-
work system, including joining and leaving the network,
uploading and downloading files, and the related file
replication and node discovery processes.

• The program starts.
• A ChordNode instance joins the Chord Network.
• The main menu is displayed to the user.
• The user selects an action from the menu.
• Based on the user’s selection, one of the following

actions is performed:

– Connect to the Network: The node connects to
the Chord Network by updating its predecessor,
successor, and finger table.

– Leave the Network: The node leaves the Chord
Network by replicating its files to other nodes,
updating its predecessor, successor, and clearing
its finger table.

– Upload File: The node locates the successor node
responsible for the file ID, transfers the file to
the successor, and potentially replicates the file
based on the chosen consistency strategy.

– Download File: The node locates the node con-
taining the requested file and transfers the file
from that node.

• After performing the selected action, the node up-
dates its finger table and the finger tables of its peers.

• The program exits.

2) Interaction between user and system functions:

Image2: Use Case Diagram - Interactions

This Use Case Diagram provides an overview of the
interactions between the users (nodes and clients) and
the various functionalities of the Chord node system,
such as joining and leaving the network, uploading and
downloading files, managing finger tables, and replicating
files across the network nodes.

• Actors

– Node: Represents a node in the Chord network
that participates in the distributed system.

– Client: Represents a client application or user
that interacts with the Chord network, typically
to upload or download files.

• Use Cases

– Join Network: Allows a node to join the Chord
network by connecting to an existing node and
updating its predecessor, successor, and finger
table information.

– Leave Network: Allows a node to leave the Chord
network by notifying its predecessor and succes-

8



sor nodes, replicating its files, and updating the
network accordingly.

– Upload File: Allows a client or node to up-
load a file to the Chord network, which triggers
file replication based on the chosen consistency
model.

– Download File: Allows a client or node to down-
load a file from the Chord network by locating
the appropriate nodes responsible for storing the
file.

– Manage Finger Table: Represents the system’s
functionality to manage and update the finger
tables of nodes, ensuring efficient routing and
data lookups within the Chord network.

– Replicate File: Represents the system’s
functionality to replicate files across multiple
nodes based on the chosen consistency model
(eventual, sequential, or linearizable).

3) File Uploading, Downloading & Replication:

Image3: File Management

This sequence diagram illustrates the interactions be-
tween the user, the ChordNode instances, and the system
for various operations:

• File Upload

– The user initiates a file upload.
– Node 1 receives the file upload request and

calculates the file ID.
– Node 1 locates the successor node responsible

for the file ID by contacting Node 2.
– Node 2 provides the successor node (Node 3) to

Node 1.
– Node 1 transfers the file to Node 3.
– Node 3 receives the file and replicates it if

necessary.

• For file download

– The user initiates a file download.
– Node 1 receives the file download request and

calculates the file ID.

– Node 1 locates the node containing the file by
contacting Node 2.

– Node 2 provides the node with the file (Node 3)
to Node 1.

– Node 1 requests the file from Node 3.
– Node 3 transfers the file to Node 1.

4) Flow of Interactions with Chord Network:

Image4: Process Interaction

The activity diagram also shows the interactions be-
tween different processes, such as the Connection Handler
interacting with other handlers, and the processes for
updating the predecessor, successor, and finger table after
network topology changes.

• Initialize Node: This process initializes a ChordNode
object with the provided IP address, port number, and
other configuration parameters.

• Start Socket Thread: This process starts a separate
thread to listen for incoming connections from other
nodes in the Chord network.

• Ping Successor Node: This process periodically pings
the successor node to detect and handle node fail-
ures.

• Accept Connection: This process accepts incoming
connections from other nodes.

• Connection Handler: This process dispatches the in-
coming connection to the appropriate handler based
on the connection type (e.g., join, file transfer, ID
lookup).

• Join Handler: This process handles a node joining
the Chord network by updating the predecessor and
successor information.

• File Transfer Handler: This process handles file up-
load and download requests between nodes.

• ID Lookup: This process finds the successor node
responsible for a given key (file ID) in the Chord

9



network.
• Update Predecessor/Successor: This process updates

the predecessor and successor information for the
current node based on the join or leave events.

• Modify Finger Table: This process updates the finger
table of the current node based on changes in the
network topology.

• Display Menu: This process displays the menu op-
tions to the user for interacting with the Chord
network.

• Handle User Selection: This process handles the user’s
selection from the menu, such as joining the network,
leaving the network, uploading files, or downloading
files.

• Terminate Node: This process handles the termi-
nation of the current node, including leaving the
network and replicating files to other nodes before
exiting.

VI. EVALUATION

1) Effectiveness of Chosen Approaches - Replication:

a) Eventual Consistency Approach:

Image5: Eventual Consistency

The replicate_file_eventual function embodies our sys-
tem’s eventual consistency strategy. This method is de-
signed to prioritize system availability and tolerance to
network partitions by asynchronously replicating files
across nodes.

In this approach, after calculating the file’s hash to
determine its rightful place in the network, the file is
replicated across a predefined number of successor nodes
without waiting for each replication to be acknowledged
before proceeding. This non-blocking behavior enhances
the system’s ability to remain available and responsive,
even in the face of node failures or network issues. The
trade-off is that data may not be immediately consistent
across all nodes, but it is guaranteed to become consistent
over time. This model is computationally less complex,
making it highly efficient for large-scale applications
where slight delays in data consistency are acceptable.

b) Sequential Consistency Approach:

Image6: Sequential Consistency

For applications where the order of operations is criti-
cal, our replicate_file_sequential function ensures that all
operations are perceived in the same sequence across the
network.

In this model, operations are synchronized across
nodes by acquiring and releasing locks before and after
the replication process. This guarantees that all nodes will
apply updates in the same order, preserving operation
sequence across the system. While this approach ensures
a higher level of consistency, it does introduce additional
computational overhead due to the lock management and
the sequential nature of the replication process, making
it more suited to environments where data integrity and
order are paramount.

c) Linearizable Consistency Approach:

Image7: Linearizable Consistency

Our replicate_file_linearizable function provides the
strongest level of consistency, ensuring that all operations
are instantly visible to all nodes, which is crucial for
systems where immediate data accuracy is required.

In this model, a global lock is acquired before
replication starts, and released only after the update
has been successfully propagated to all relevant nodes,
ensuring that any read operation returns the most recent
write. This approach is particularly effective for use
cases such as financial transactions or any system that
cannot tolerate stale reads. The trade-off for achieving
linearizable consistency is a higher computational
complexity and the potential for increased latency due to
the need for synchronization across nodes.

2) Effectiveness of Chosen Approaches - Concurrency:
a) Optimistic:

Image8: Optimistic Concurrency

Optimistic locking is employed in scenarios where
conflicts are expected to be rare. It allows operations
to proceed without acquiring locks upfront, under the
assumption that the likelihood of simultaneous conflicting
operations is low. This strategy is encapsulated in our
acq_lock_opt method, which marks the start of a trans-
action by noting a timestamp or version number, rather
than enforcing immediate exclusivity.

The system checks for conflicts at the end of the
transaction. If a conflict is detected—meaning another

10



operation has modified the resource since the timestamp
was recorded—the transaction is rolled back and possibly
retried. This approach minimizes locking overhead,
enhancing system throughput and reducing latency. It is
especially effective in read-heavy workloads where write
conflicts are infrequent, thereby maximizing operational
efficiency without significantly compromising data
consistency.

b) Pessimistic:

Image9: Pessemistic Concurrency

For environments where operations frequently conflict,
we utilize pessimistic locking. This strategy assumes that
conflicts are common and proactively prevents concurrent
access to resources by acquiring locks before performing
any operations. The acq_lock_pess function demonstrates
this approach, securing exclusive access to the resource
upfront to avoid potential conflicts.

This method ensures that once a transaction begins,
it can complete without interference from other
operations. While it significantly reduces the risk of data
inconsistency, it can lead to increased waiting times for
operations, as they must wait for locks to be released.
Pessimistic locking is therefore most effective in write-
heavy environments or applications where maintaining
strict data consistency is critical.

3) Effectiveness of Chosen Approaches - Resource Discov-
ery:

a) Consistent Hashing for Resource Placement:

Image10: Hashing

The foundation of our resource discovery mechanism
lies in Chord’s consistent hashing algorithm. This
algorithm assigns each node and resource a position
on a hash ring, ensuring a distributed yet predictable

placement of resources. Our implementation uses the
calculate_hash function to determine the position of
resources: By hashing the resource identifier (such as a
filename or key) and calculating its position on the ring,
we can efficiently determine which node is responsible for
storing that particular resource. This method significantly
reduces the complexity of locating resources, as it avoids
the need for a central lookup table and ensures that the
load is evenly distributed among the nodes in the system.

b) Efficient Lookup with Ordered Node Links:

Image10: Lookup

Our system’s resource discovery is further enhanced
by the ordered nature of nodes within the Chord ring.
Each node maintains knowledge of its immediate suc-
cessor (self.successor), and through a series of queries, a
node can find the responsible node for a given resource.
The discover_resources method embodies this approach,
leveraging the network’s structure for efficient lookups

This method effectively utilizes the Chord protocol’s
principles, ensuring that resource discovery operations
are both fast and reliable. The ordered linkage of nodes,
combined with the consistent hashing of resources,
allows for resource discovery that scales logarithmically
with the number of nodes, maintaining high efficiency as
the system grows.

VII. DEMONSTRATION

A. User Interface

Image11: Display Menu

In our distributed system, the displayMenu function
plays a crucial role in interfacing with the user, offering
a straightforward and interactive way to navigate the
system’s features. This method encapsulates the simplicity
and efficiency we aimed for in our design, presenting
users with a clear and concise list of operations they can
perform, such as connecting to the network, uploading
and downloading files, and leaving the network. Through
this method, we ensure that users, regardless of their
technical expertise, can easily interact with our distributed

11



system, making distributed computing accessible and
user-friendly.

B. Upload

Image12: Uploading File

The upload_file user interface (UI) component in our
distributed system is meticulously designed to simplify the
process of sharing files across the network, ensuring that
users can easily contribute their resources. This function
represents a critical aspect of our system’s user interaction,
facilitating the secure and efficient uploading of files to the
distributed network.

C. Download

Image13: Downloading File

D. Crash

Image14: Crash Handling

Our UI is designed to keep the user informed through-
out their interaction with the system. During a recent
incident, a user attempted to upload a file, and our system
detected a node crash. Immediately, the UI displayed
a clear message: "Connection denied while getting Suc-
cessor Node Crashed, fixing it!" This feedback is crucial
because it acknowledges the issue without overwhelming
the user with technical details.

This incident showcases our system’s proactive crash
detection and automatic recovery procedures. After rec-
ognizing the failure, the system initiated a self-healing
process. Once the issue was addressed, the Main Menu
was presented again, indicating that the user could retry
their action. This seamless handling of node crashes

ensures that users experience minimal disruption and
maintains their trust in the system’s resilience.

REFERENCES

[1] K. P. N. Puttaswamy and B. Y. Zhao, "A Case for Unstructured
Distributed Hash Tables," 2007 IEEE Global Internet
Symposium, Anchorage, AK, USA, 2007, pp. 7-12, doi:
10.1109/GI.2007.4301423. keywords: Peer to peer computing;Large-
scale systems;Routing;Information retrieval;Application soft-
ware;Network topology;Computer science;File systems;Mechanical
factors;Impedance,

[2] Xu, Zhiyong & He, Xubin & Bhuyan, Laxmi. (2005). Efficient
file sharing strategy in DHT based P2P systems. 151 - 158.
10.1109/PCCC.2005.1460541.

[3] Haiying Shen, Ze Li, and Kang Chen, “Social-P2P: An Online Social
Network Based P2P File Sharing System,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 10, pp. 2874–2889,
Oct. 2015.

[4] J. Zhang, G. Wu, X. Hu and X. Wu, "A Distributed Cache for
Hadoop Distributed File System in Real-Time Cloud Services,"
2012 ACM/IEEE 13th International Conference on Grid Computing,
Beijing, China, 2012, pp. 12-21, doi: 10.1109/Grid.2012.17. key-
words: Real-time systems;Cloud computing;Libraries;Servers;Data
models;Random access memory;File systems;distributed cache sys-
tem;cloud storage;HDFS;real-time file acces;in-memory cloud,

[5] C. Riley and C. Scheideler, "A distributed hash table for com-
putational grids," 18th International Parallel and Distributed Pro-
cessing Symposium, 2004. Proceedings., Santa Fe, NM, USA, 2004,
pp. 51-, doi: 10.1109/IPDPS.2004.1302971. keywords: Distributed
computing;Grid computing;Peer to peer computing;Concurrent
computing;Computer networks;Heuristic algorithms;Dynamic pro-
gramming;Computer network management;Computer applica-
tions;Topology,

[6] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan. 2001. Chord: A scalable peer-to-
peer lookup service for internet applications. SIGCOMM
Comput. Commun. Rev. 31, 4 (October 2001), 149–160.
https://doi.org/10.1145/964723.383071

12


